\(\int \frac {x^5 (a+b \csc ^{-1}(c x))}{(d+e x^2)^3} \, dx\) [111]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 727 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}+\frac {b \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 e^{5/2} \left (c^2 d+e\right )^{3/2}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^3}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^3} \]

[Out]

1/4*(-a-b*arccsc(c*x))/e/(e+d/x^2)^2+1/2*(-a-b*arccsc(c*x))/e^2/(e+d/x^2)+1/8*b*(c^2*d+2*e)*arctan((c^2*d+e)^(
1/2)/c/x/e^(1/2)/(1-1/c^2/x^2)^(1/2))/e^(5/2)/(c^2*d+e)^(3/2)-(a+b*arccsc(c*x))*ln(1-(I/c/x+(1-1/c^2/x^2)^(1/2
))^2)/e^3+1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^3
+1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^3+1/2*(a+b
*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3+1/2*(a+b*arccsc(c
*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3+1/2*I*b*polylog(2,(I/c/x+(
1-1/c^2/x^2)^(1/2))^2)/e^3-1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1
/2)))/e^3-1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^3-1/2*I*b*
polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3-1/2*I*b*polylog(2,I*c*(I/
c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3+1/2*b*arctan((c^2*d+e)^(1/2)/c/x/e^(1/2)/(1
-1/c^2/x^2)^(1/2))/e^(5/2)/(c^2*d+e)^(1/2)+1/8*b*c*d*(1-1/c^2/x^2)^(1/2)/e^2/(c^2*d+e)/(e+d/x^2)/x

Rubi [A] (verified)

Time = 1.06 (sec) , antiderivative size = 727, normalized size of antiderivative = 1.00, number of steps used = 33, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.619, Rules used = {5349, 4817, 4721, 3798, 2221, 2317, 2438, 4813, 390, 385, 211, 4825, 4615} \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^3}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (\frac {d}{x^2}+e\right )}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (\frac {d}{x^2}+e\right )^2}-\frac {\log \left (1-e^{2 i \csc ^{-1}(c x)}\right ) \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {b \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{8 e^{5/2} \left (c^2 d+e\right )^{3/2}}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^3}+\frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 x \left (c^2 d+e\right ) \left (\frac {d}{x^2}+e\right )}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^3} \]

[In]

Int[(x^5*(a + b*ArcCsc[c*x]))/(d + e*x^2)^3,x]

[Out]

(b*c*d*Sqrt[1 - 1/(c^2*x^2)])/(8*e^2*(c^2*d + e)*(e + d/x^2)*x) - (a + b*ArcCsc[c*x])/(4*e*(e + d/x^2)^2) - (a
 + b*ArcCsc[c*x])/(2*e^2*(e + d/x^2)) + (b*ArcTan[Sqrt[c^2*d + e]/(c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(2*e^(
5/2)*Sqrt[c^2*d + e]) + (b*(c^2*d + 2*e)*ArcTan[Sqrt[c^2*d + e]/(c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(8*e^(5/
2)*(c^2*d + e)^(3/2)) + ((a + b*ArcCsc[c*x])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d +
e])])/(2*e^3) + ((a + b*ArcCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2
*e^3) + ((a + b*ArcCsc[c*x])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^3) +
((a + b*ArcCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^3) - ((a + b*
ArcCsc[c*x])*Log[1 - E^((2*I)*ArcCsc[c*x])])/e^3 - ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sq
rt[e] - Sqrt[c^2*d + e])])/e^3 - ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d +
e])])/e^3 - ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^3 - ((I/2)
*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^3 + ((I/2)*b*PolyLog[2, E^((2*I
)*ArcCsc[c*x])])/e^3

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4615

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - Rt[a^2 - b^2, 2] - I*
b*E^(I*(c + d*x)))), x] + Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x)))), x])
/; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 4721

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4813

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)
*((a + b*ArcSin[c*x])/(2*e*(p + 1))), x] - Dist[b*(c/(2*e*(p + 1))), Int[(d + e*x^2)^(p + 1)/Sqrt[1 - c^2*x^2]
, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 4817

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcSin[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 4825

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cos[x]/(
c*d + e*Sin[x])), x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 5349

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[
(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n
, 0] && IntegerQ[m] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{x \left (e+d x^2\right )^3} \, dx,x,\frac {1}{x}\right ) \\ & = -\text {Subst}\left (\int \left (\frac {a+b \arcsin \left (\frac {x}{c}\right )}{e^3 x}-\frac {d x \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{e \left (e+d x^2\right )^3}-\frac {d x \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{e^2 \left (e+d x^2\right )^2}-\frac {d x \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{e^3 \left (e+d x^2\right )}\right ) \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {\text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^3}+\frac {d \text {Subst}\left (\int \frac {x \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )}{e^3}+\frac {d \text {Subst}\left (\int \frac {x \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{\left (e+d x^2\right )^2} \, dx,x,\frac {1}{x}\right )}{e^2}+\frac {d \text {Subst}\left (\int \frac {x \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{\left (e+d x^2\right )^3} \, dx,x,\frac {1}{x}\right )}{e} \\ & = -\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}-\frac {\text {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\csc ^{-1}(c x)\right )}{e^3}+\frac {d \text {Subst}\left (\int \left (-\frac {\sqrt {-d} \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {\sqrt {-d} \left (a+b \arcsin \left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right )}{e^3}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{c^2}} \left (e+d x^2\right )} \, dx,x,\frac {1}{x}\right )}{2 c e^2}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{c^2}} \left (e+d x^2\right )^2} \, dx,x,\frac {1}{x}\right )}{4 c e} \\ & = \frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b e^3}+\frac {(2 i) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\csc ^{-1}(c x)\right )}{e^3}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 e^3}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 e^3}+\frac {b \text {Subst}\left (\int \frac {1}{e-\left (-d-\frac {e}{c^2}\right ) x^2} \, dx,x,\frac {1}{\sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 c e^2}+\frac {\left (b \left (c^2 d+2 e\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{c^2}} \left (e+d x^2\right )} \, dx,x,\frac {1}{x}\right )}{8 c e^2 \left (c^2 d+e\right )} \\ & = \frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b e^3}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^3}+\frac {b \text {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{e^3}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}+\frac {\left (b \left (c^2 d+2 e\right )\right ) \text {Subst}\left (\int \frac {1}{e-\left (-d-\frac {e}{c^2}\right ) x^2} \, dx,x,\frac {1}{\sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 c e^2 \left (c^2 d+e\right )} \\ & = \frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}+\frac {b \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 e^{5/2} \left (c^2 d+e\right )^{3/2}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^3}-\frac {(i b) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^3}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3} \\ & = \frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}+\frac {b \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 e^{5/2} \left (c^2 d+e\right )^{3/2}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^3}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^3}-\frac {b \text {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}-\frac {b \text {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}-\frac {b \text {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3}-\frac {b \text {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e^3} \\ & = \frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}+\frac {b \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 e^{5/2} \left (c^2 d+e\right )^{3/2}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^3}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^3}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e^3}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e^3}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e^3}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e^3} \\ & = \frac {b c d \sqrt {1-\frac {1}{c^2 x^2}}}{8 e^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \csc ^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \csc ^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}+\frac {b \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 e^{5/2} \left (c^2 d+e\right )^{3/2}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e^3}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}-\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^3}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e^3} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(2053\) vs. \(2(727)=1454\).

Time = 7.39 (sec) , antiderivative size = 2053, normalized size of antiderivative = 2.82 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Result too large to show} \]

[In]

Integrate[(x^5*(a + b*ArcCsc[c*x]))/(d + e*x^2)^3,x]

[Out]

-1/4*(a*d^2)/(e^3*(d + e*x^2)^2) + (a*d)/(e^3*(d + e*x^2)) + (a*Log[d + e*x^2])/(2*e^3) + b*((((7*I)/16)*Sqrt[
d]*(-(ArcCsc[c*x]/((-I)*Sqrt[d]*Sqrt[e] + e*x)) + (I*(ArcSin[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(Sqrt[e
] + c*((-I)*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) - e]*(Sqrt[d] + I*Sqrt[e]
*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d]))/e^(5/2) - (((7*I)/16)*Sqrt[d]*(-(ArcCsc[c*x]/(I*Sqrt[d]*Sqrt[e] + e*x)) -
 (I*(ArcSin[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(-Sqrt[e] + c*((-I)*c*Sqrt[d] + Sqrt[-(c^2*d) - e]*Sqrt[
1 - 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) - e]*(Sqrt[d] - I*Sqrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d]))/e^(5/2) - (
d*((I*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d + e)*((-I)*Sqrt[d] + Sqrt[e]*x)) - ArcCsc[c*x]/(Sqrt[
e]*((-I)*Sqrt[d] + Sqrt[e]*x)^2) - ArcSin[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d + e)*Log[(4*d*Sqrt[e]*Sqrt[c^2*d
+ e]*(I*Sqrt[e] + c*(c*Sqrt[d] - Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])*x))/((2*c^2*d + e)*((-I)*Sqrt[d] + Sqr
t[e]*x))])/(d*(c^2*d + e)^(3/2))))/(16*e^(5/2)) - (d*(((-I)*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d
 + e)*(I*Sqrt[d] + Sqrt[e]*x)) - ArcCsc[c*x]/(Sqrt[e]*(I*Sqrt[d] + Sqrt[e]*x)^2) - ArcSin[1/(c*x)]/(d*Sqrt[e])
 + (I*(2*c^2*d + e)*Log[(-4*d*Sqrt[e]*Sqrt[c^2*d + e]*((-I)*Sqrt[e] + c*(c*Sqrt[d] + Sqrt[c^2*d + e]*Sqrt[1 -
1/(c^2*x^2)])*x))/((2*c^2*d + e)*(I*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e)^(3/2))))/(16*e^(5/2)) + ((I/16)*(Pi
^2 - 4*Pi*ArcCsc[c*x] + 8*ArcCsc[c*x]^2 - 32*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c
*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] + (4*I)*Pi*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e
])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (8*I)*ArcCsc[c*x]*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcC
sc[c*x]))] + (16*I)*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/(c*S
qrt[d]*E^(I*ArcCsc[c*x]))] + (4*I)*Pi*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (8*
I)*ArcCsc[c*x]*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (16*I)*ArcSin[Sqrt[1 - (I*
Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + (8*I)*ArcC
sc[c*x]*Log[1 - E^((2*I)*ArcCsc[c*x])] - (4*I)*Pi*Log[Sqrt[e] + (I*Sqrt[d])/x] + 8*PolyLog[2, (-Sqrt[e] + Sqrt
[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 8*PolyLog[2, -((Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCs
c[c*x])))] + 4*PolyLog[2, E^((2*I)*ArcCsc[c*x])]))/e^3 + ((I/16)*(Pi^2 - 4*Pi*ArcCsc[c*x] + 8*ArcCsc[c*x]^2 -
32*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcCsc[c*x])/
4])/Sqrt[c^2*d + e]] + (4*I)*Pi*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (8*I)*Ar
cCsc[c*x]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + (16*I)*ArcSin[Sqrt[1 + (I*Sqrt
[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + (4*I)*Pi*Log[
1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (8*I)*ArcCsc[c*x]*Log[1 - (Sqrt[e] + Sqrt[c^2
*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (16*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (Sq
rt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + (8*I)*ArcCsc[c*x]*Log[1 - E^((2*I)*ArcCsc[c*x])] - (
4*I)*Pi*Log[Sqrt[e] - (I*Sqrt[d])/x] + 8*PolyLog[2, (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))]
 + 8*PolyLog[2, (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*PolyLog[2, E^((2*I)*ArcCsc[c*x]
)]))/e^3)

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.67 (sec) , antiderivative size = 1269, normalized size of antiderivative = 1.75

method result size
parts \(\text {Expression too large to display}\) \(1269\)
derivativedivides \(\text {Expression too large to display}\) \(1285\)
default \(\text {Expression too large to display}\) \(1285\)

[In]

int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)

[Out]

a*(-1/4*d^2/e^3/(e*x^2+d)^2+1/2/e^3*ln(e*x^2+d)+d/e^3/(e*x^2+d))+b/c^6*(-1/8*c^6*(4*c^6*d^2*arccsc(c*x)*x^2+6*
c^6*d*e*arccsc(c*x)*x^4-((c^2*x^2-1)/c^2/x^2)^(1/2)*c^5*d^2*x-((c^2*x^2-1)/c^2/x^2)^(1/2)*c^5*d*e*x^3+I*c^4*d^
2+2*I*c^4*d*e*x^2+I*e^2*c^4*x^4+4*c^4*d*e*arccsc(c*x)*x^2+6*arccsc(c*x)*e^2*c^4*x^4)/e^2/(c^2*e*x^2+c^2*d)^2/(
c^2*d+e)-1/4*I/(c^2*d+e)/e^2*c^8*d*sum((_R1^2-1)/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2
/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d)
)+I/(c^2*d+e)/e^2*c^6*dilog(1+I/c/x+(1-1/c^2/x^2)^(1/2))-I/(c^2*d+e)/e^2*c^6*dilog(I/c/x+(1-1/c^2/x^2)^(1/2))-
1/4*I/(c^2*d+e)/e^2*c^6*sum((_R1^2*c^2*d-c^2*d-4*e)/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/
c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2
*d))-1/(c^2*d+e)/e^2*c^6*arccsc(c*x)*ln(1+I/c/x+(1-1/c^2/x^2)^(1/2))-1/(c^2*d+e)/e^3*c^8*d*arccsc(c*x)*ln(1+I/
c/x+(1-1/c^2/x^2)^(1/2))-1/4*I/(c^2*d+e)/e^3*c^8*d*sum((_R1^2*c^2*d-c^2*d-4*e)/(_R1^2*c^2*d-c^2*d-2*e)*(I*arcc
sc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_
Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))-1/4*I/(c^2*d+e)/e^3*c^10*d^2*sum((_R1^2-1)/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c
*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+
(-2*c^2*d-4*e)*_Z^2+c^2*d))-5/8*I*(e*(c^2*d+e))^(1/2)/(c^2*d+e)^2/e^3*arctanh(1/4*(2*c^2*d*(I/c/x+(1-1/c^2/x^2
)^(1/2))^2-2*c^2*d-4*e)/(c^2*d*e+e^2)^(1/2))*c^8*d+I/(c^2*d+e)/e^3*c^8*d*dilog(1+I/c/x+(1-1/c^2/x^2)^(1/2))-I/
(c^2*d+e)/e^3*c^8*d*dilog(I/c/x+(1-1/c^2/x^2)^(1/2))-3/4*I*(e*(c^2*d+e))^(1/2)/(c^2*d+e)^2/e^2*arctanh(1/4*(2*
c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2-2*c^2*d-4*e)/(c^2*d*e+e^2)^(1/2))*c^6)

Fricas [F]

\[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^3,x, algorithm="fricas")

[Out]

integral((b*x^5*arccsc(c*x) + a*x^5)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

[In]

integrate(x**5*(a+b*acsc(c*x))/(e*x**2+d)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^3,x, algorithm="maxima")

[Out]

1/4*a*((4*d*e*x^2 + 3*d^2)/(e^5*x^4 + 2*d*e^4*x^2 + d^2*e^3) + 2*log(e*x^2 + d)/e^3) + b*integrate(x^5*arctan2
(1, sqrt(c*x + 1)*sqrt(c*x - 1))/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), x)

Giac [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^3,x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \]

[In]

int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^3,x)

[Out]

int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^3, x)